




activation including BTK.29,30 BTK is constitutively activated in
WM cells and its inhibition blocks IkBa activity in WM cells as
shown in these studies. We therefore sought to determine whether
MYD88 L265P was responsible for the BTK activation in WM cells.
Our studies showed that MYD88 was preferentially complexed to
phosphorylated BTK in both L265P-expressing WM cell lines,
whereas little complexing was observed in MYD88 WT cells.
Importantly, knockdown of MYD88 or the use of a MYD88
inhibitor abrogated BTK activity in L265P-expressing cell lines,
while overexpression of MYD88 L265P showed more robust BTK
activity. In contrast, overexpression of MYD88 WT did not show
enhanced BTK activation over control vector-transduced cells. Finally,
the use of ibrutinib, an inhibitor of BTK kinase activity, resulted in
decreased MYD88-BTK complexing in MYD88 L265P-expressing
cells. Taken together, these findings denote that BTK binds to, and is
activated in response to, MYD88 L265P and promotes activation
of IkBa. Moreover, the lack of effect of IRAK 1 and 4 inhibition
on BTK activity, and vice versa, using inhibitors for each of the
kinases suggests that these pathways are likely distinct in mediating
MYD88-related NF-kB activation.

An interesting finding in these studies was the presence of an
intact TLR signaling pathway in BCWM.1 andMWCL-1 cells, both
of which express 1 WT MYD88 allele. Inhibition of MYD88
blocked IkBa signaling by both LPS and ODNs in these cells,

consistent with prior studies which focused on WT MYD88 sig-
naling. It remains unclear from our experiments whether MYD88
L265P is capable of transmitting TLR signaling, and such studies
are now in progress in our laboratory to clarify this important point.
These findings may, however, have important clinical implications
because, not uncommonly, flares in WM disease can occur in
patients who are septic or experiencing viral infections; they can
also occur in patients after receiving vaccinations. The preservation
of intact TLR signaling offered by either the MYD88 WT or
MYD88 L265P could be etiologic for these observations.

Central to these findings are the implications for targeting the
MYD88 pathway for WM therapy, including use of IRAK and
BTK inhibitors. Advanced in the clinical development pathway
are inhibitors of BTK kinase activity whose prototype ibrutinib is
a potent inducer of apoptosis of MYD88 L265P-expressing WM
cells,25 with encouraging activity observed in several WM patients
included in a phase 1 study as well as in an ongoing phase 2 clinical
trial.31,32 The induction of BTK activity by MYD88 L265P may
therefore represent the underlying mechanism by which BTK inhib-
itors induce killing of malignant cells in WM patients, and provides
further support for the investigation of BTK inhibitors in WM. It is
interesting that ibrutinib-mediated inhibition of BTK activity did
not affect activation state or protein levels of IRAK 1 and vice versa,
supporting that MYD88 signaling through these pathways is likely

Figure 6. MYD88 signals through BTK in response to TLR stimulation, and BTK is stimulated by MYD88 L265P in WM cells. (A) The impacts of TLR4 ligand, LPS,

and TLR9 ligand, ODN 2006 (a type B CpG oligonucleotide; InvivoGen), on the phosphorylation of BTK and IkBa in BCWM.1 WM cells in the presence or absence of a MYD88

inhibitor. (B) Total and phospho-BTK levels in WM cells transduced with a lentiviral control vector, or vectors engineered to overexpress flag-tagged MYD88 WT or L265P coding

regions. (C) The impact of ibrutinib on the phosphorylation state of BTK and IkBa depicted by western blot analysis. (D) Dose-response curve for ibrutinib on the cell viability of

MYD88 L265P-bearing BCWM.1 and MWCL-1 WM cells, and OCI-Ly3 DLBCL cells vs MYD88 WT-expressing Ramos, OCI-Ly19, and RPMI 8226.
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Figure 7. Dual inhibition of BTK and IRAK leads to synergistic killing in MYD88 L265P-expressing WM cells, and more robust suppression of NF-kB pathway

activity. (A,C) BCWM.1 and MWCL-1 cells were treated with an inhibitor of BTK (ibrutinib; PCI 32765), IRAK 1 and 4, or both. Cell death was assessed by high-throughput

CellTiter-Glo Luminescent cell viability assay. (B,D) Synergism was assessed by CI analysis, with the heat maps depicting the CI values at varying dosimetry for ibrutinib and

the IRAK 1 and 4 kinase inhibitor. CI, combination index. (E) For these experiments, CI values ,1 denote synergistic interactions. p65-NF-kB activity was assessed by

a luciferase promoter assay at 6 hours in BCWM.1 cells. The doses were used as follows: ibrutinib (lane a, 5.000; lane b, 1.580; lane c, 0.500; lane d, 0.158; lane e, 0.050;

lane f, 0.016 mM) and IRAK1/4 kinase inhibitor (lane g, 20.000; lane h, 6.325; lane i, 2.000; lane j, 0.633; lane k, 0.200; lane l, 0.063 mM). Experiments were performed in

triplicate. A representative experimental set is shown. (F) The inhibition of NF-kB activity was also assessed by examination of phospho-IkBa following treatment with ibrutinib,

IRAK 1 and 4 kinase inhibitor, or both using western blot analysis in BCWM.1 cells. (G) Primary BMMCs from 4 WM patients genotyped for MYD88 L265P patients, and

PBMCs from 4 healthy donors genotyped for MYD88 WT were cultured with ibrutinib (4.0, 2.0, 1.0 mM) or IRAK 1 and 4 inhibitor (20.0, 10.0, 5.0 mM) or in combination for

24 hours. Cell apoptosis was assessed in CD191-expressing cells following annexin V staining.
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to be distinct. Consistent with this observation, the combined use of
IRAK and BTK inhibitors resulted in augmented inhibition of
NF-kB signaling and more robust WM cell killing. These studies
therefore provide the rationale for development of MYD88 inhibitors
with the potential to more proximally block BTK and IRAK sig-
naling, or conversely use a combination of BTK and IRAK inhibitors
in WM patients, as well as in patients with other diseases dependent
on MYD88 L265P signaling.

In summary, we demonstrate by lentiviral transduction andMYD88
pathway inhibitors that acquisition of MYD88 L265P confers
a survival advantage in WM cells. Survival of WM cells is pre-
dicated by induction of both IRAK and BTK signaling, the latter of
which represents a novel finding for MYD88 L265P signaling.
Importantly, these studies provide the framework for the inves-
tigation of inhibitors targeting MYD88 and its downstream path-
ways for the treatment of WM.
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